
Creating
Library Web

Services

Course Overview

•  Who we are!
•  Demos!
•  Key Terms & Background!
•  Code Samples!
•  Questions!

Jason Clark

• Digital Initiatives
Librarian, Head of Digital
Access and Web Services"
Montana State University!

• twitter.com/jaclark!

• jaclark@montana.edu!

What about You?

•  Name !
•  Organization and Job Title!
•  HTML and CSS proficiency?!
•  Javascript or PHP (server-side)

programming proficiency?!
•  Why interested in web services?!

Web Services ��
an Intro

Jason Clark - Montana State University

Pinboard.in #tag

pinboard.in/u:jasonclark/t:lita-class-api-intro!

Why Should You Care?

• Web Services are the backbone of
mashups!

• Web Services enable you to access and
recombine data!

• Move and share data across systems in
real time!

Web Services for
Interoperability

• Lots of different ways in which people
can access information!

• Different devices!
• Mobile devices, computers, special

purpose devices!
• Machine access to data!

What Is A Mashup?

•  a Web application that uses and/or
combines data from multiple sources
within a single tool!

Why Create A Mashup

•  Want to bring together disparate data
sources!

•  Want to enhance a existing source of
data!

•  Want to improve usability and user
interfaces!

•  Want to make a web page more
dynamic and engaging!

Top Mashup Types

•  http://www.programmableweb.com/
mashups!

Some Library Mashups

•  Repository 66!
•  Terrapod Project!
•  Texas A&M Geologic Atlas of the US!
•  VuFind!

Mashup Examples

•  HousingMaps.com!
•  McMaster University Mashup of Air

Photos!
•  go2collegeMT!

How Do Mashups Work?

•  Retrieve data from another source(s)
typically via a web service!

•  Mix these datasets together and
integrate them into your website!

BASIC CONCEPTS

•  API!
•  Web Service!
•  Structured Data!

Terms: API

•  An application programming interface
(or API) is a way for developers to
access parts of a remote web site and
integrate it with their own site."

MSU Libraries "lofiAPI" Example "

Terms: Web Service

•  Provides access to data and/or
procedures (API)!

•  On a remote/external system (usually)!
•  Use structured data for data exchange

(often XML)!
•  Come in 3 flavors : RPC, SOAP, REST!

Terms: Structured Data

•  Structured data = XML and JSON!
•  Extensible Mark-up Language and

Javascript Object Notation!
•  Flexible mark-up languages!
•  Lightweight and easy to parse!
•  Allow communication between

disparate systems!

Putting it all together

•  Data access = Web Services (REST,
SOAP, XML-RPC)!

•  Data typically formatted in XML or
JSON!

•  Data display = 1 or more scripting
languages (javascript, PHP, python, etc)!

What is XML-RPC

•  XML Remote Procedure Call!
•  Provides a means to call methods/

procedures on a remote server and
make changes and/or retrieve data!

•  Most common implementation of
XML-RPC used today is that of blog
ping services: Technorati, Flickr,
FeedBurner, others!

What is SOAP?

•  “Simple Object Access Protocol”!
•  Specification maintained at w3.org!
•  XML based!
•  There's nothing simple about SOAP!!

SOAP Example
•  EBAY wsdl"

http://api.google.com/GoogleSearch.wsdl"
<?xml version="1.0" encoding="UTF-8"?>"
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/" "
xmlns:ns1="urn:ebay:apis:eBLBaseComponents">"
<SOAP-ENV:Header>"
..."
</SOAP-ENV:Header>"
<SOAP-ENV:Body>"
<ns1:GetSearchResultsRequest>"
<ns1:Version>425</ns1:Version>"
<ns1:Query>*</ns1:Query>"
<ns1:TotalOnly>true</ns1:TotalOnly>"
</ns1:GetSearchResultsRequest>"
</SOAP-ENV:Body>"
</SOAP-ENV:Envelope> "

What is REST?

•  The greatest thing since sliced...!
•  Representational State Transfer!
•  Unique data resources with addresses!

Theory of REST

•  Focus on diversity of resources (nouns),
not actions (verbs)!

•  Every resource is uniquely addressable!
•  All resources share the same

constrained interface for transfer of
state (actions)!

•  Must be stateless, cacheable, and
layered!

REST = Web Protocol

•  Web As Prime Example!
•  URLs uniquely address resources!
•  HTTP methods (GET, POST, HEAD,

etc.) and content types provide a
constrained interface!

•  All transactions are atomic!
•  HTTP provides cache control!

REST Verbs

• Create, Read, Update Delete!
• POST, GET, PUT, DELETE!

REST in Practice

• REST!
• Google APIs!

• Google Calendar!
• Google Spreadsheet!

• RESTful!
• Flickr!

REST: Final Thoughts

•  Similarity to web - easy to understand!
•  URL is the method!
•  Most popular type of web service!

Formats for Data from
Web Services

•  XML!

•  Can use a particular standard, such as: MARC XML,
Dublin Core, RSS, Atom!

•  May be a proprietary format!

•  JSON (Javascript Object Notation)!

•  very popular!

•  easy to use with Javascript!

•  can be simpler to work with !

•  HTML !

What is JSON?

• Javascript Object Notation!
• Text file used to pass information from

one system to another!
• Javascript treats it as an object!
• which makes it easily navigated and

specific pieces cherry-picked!

ProcessGBSBookInfo({ "ISBN0765304368":
{ "bib_key":"ISBN0765304368",
"info_url":"
http://books.google.com/books?
id=gfg13CM_kU8C&source=gbs_ViewAPI",
"preview_url":"http://books.google.com/books?
id=gfg13CM_kU8C&printsec=frontcover&sig=jIrSb_S
kcQRhy_VvtnKbTXjmvos&source=gbs_ViewAPI",
"t
humbnail_url":"http://books.google.com/books?
id=gfg13CM_kU8C&pg=PP1&img=1&zoom=5&sig=L
sTwGVAsy_qWYMPM6HVDTPAMokg", !
"preview":"full"!
 } });!

Cross Server Scripting��
Issues

• AJAX doesn’t allow you to access
“scripts” across servers!
• XML, PHP or other scripting

languages!
• Can access JSON across servers!
• Reason why JSON popular!

• Workaround!

Cross Server Scripting��
Workarounds

• Proxy the script via the webserver!
• Apache mod_proxy!

• Use an intermediary to transform
content into JSON!
• Use PHP to convert XML to JSON!

Some Skills you’ll Need

•  XML!
•  XPath!
•  Basic understanding of namespaces!
•  JSON!
•  Javascript, preferably a library like

JQuery!
•  Some server side scripting language!
•  PHP, Ruby on Rails, Python, Perl, etc!

Some Tools ��
For Development

• Bitnami!
• Text editor or some other IDE (Eclipse)!
• oXygen XML Editor!
• JSONLint!
• Firefox Extensions!

• Firebug, JSONovich, Web
Developer’s Toolbar!

Bitnami

JSONLint

Firebug

JSONovitch

Demo Files

• Developer Network "
Subversion repository "
http://www.worldcat.org/devnet/
code/devnetDemos/!
• Jason Clark Demos"
http://www.lib.montana.edu/~jason/
files.php "

demo_config.inc

Our Contact Info

•  Jason Clark "
Email - jaclark@montana.edu "
twitter - jaclark!

•  Karen A. Coombs"
Email - librarywebchic@gmail.com "
twitter - librarywebchic!

Karen A. Coombs

• Product Manager OCLC
Developer Network!

• 10 yrs academic libraries!

• librarian & coder!

• twitter.com/
librarywebchic!

• librarywebchic@gmail.co
m!

